{Bis[bis(trimethylsilyl)methyl]stannio(II)} $bis(\eta^2$ -ethen)nickel(0) und verwandte Verbindungen, Teil II^[1]

Christian Pluta, Klaus-R. Pörschke*, Barbara Gabor und Richard Mynott

Max-Planck-Institut für Kohlenforschung, Postfach 101353, D-45466 Mülheim a.d. Ruhr

Eingegangen am 22. September 1993

Key Words: Alkenes / Nickel complexes / Stannenes / Metal-metal bonds

$\label{eq:bis} Bis[bis(trimethylsilyl)methyl]stannio(II)\} bis(\eta^2-ethene)nickel(0) and Related Compounds, Part II^{[1]} bis(\eta^2-ethene)nickel(0) and Part II^{[1]} bis(\eta^2-ethene)$

The coordinatively unsaturated (16e) (ethene)nickel(0) stannylene complex $(C_2H_4)_2Ni=Sn\{CH(SiMe_3)_2\}_2$ (1) reacts with 1,6-heptadiene with preservation of the Ni=Sn bond to yield quantitatively the 1,6-diene derivative $(\eta^2, \eta^2-C_7H_{12})Ni=Sn {CH(SiMe_3)_2}_2$ (2). The alkene ligands of both 1 and 2 are readily displaceable. Compounds 1 and 2 react with butadiene at -50°C by a 4-e oxidation of the metal-metal pair Ni(0)/Sn(II) to Ni(II)/Sn(IV) and concomitant reduction of two butadiene molecules to butenediyl moieties to afford stereoselectively the 16-e complex Ni-cis-{ $\eta^3(Ni), \eta^1(Sn)$ -anti- $C_{3}H_{4}CH_{2}_{2}Sn\{CH(SiMe_{3})_{2}\}_{2}$ (3). Similarly, the reaction of 1 or 2 with isoprene yields regio- and stereoselectively the derivative $Ni-cis-\{\eta^3(Ni),\eta^1(Sn)-anti-C_3(3-Me)H_3CH_2\}_2Sn\{CH (SiMe_3)_2$ (4). These reactions imply the cleavage of one formal Ni=Sn bond and the formation of two new Sn-C bonds. Upon reaction of 3 with PMe₃ the configuration of the allyl system changes and, again fully stereoselectively, the 18-e

Kürzlich berichteten wir über die Synthese, Struktur, spektroskopischen Eigenschaften und einige Reaktionen der Titelverbindung $1^{[1,2]}$. In 1 liegt eine trigonal-planare Koordination des Nickel-Atoms durch das [Bis(trimethylsilyl)methyl]stannen und die beiden Ethen-Liganden vor, wobei die Ethen-C-Atome in der Koordinationsebene liegen. Im Kristall stehen die Koordinationsebene des Nickels und die Ebene des Zinns mit den Methin-C-Atomen zueinander im Winkel von 74°; der kurze Sn-Ni-Abstand von 2.39Å läßt auf Mehrfachbindungscharakter schließen^[3]. Für gelöstes 1 kann die Orientierung der Koordinationsebenen des Nickels und Zinns zueinander (starre, formal senkrechte oder coplanare Anordnung oder Rotation) aus Symmetriegründen NMR-spektroskopisch nicht festgestellt werden; mit steigender Temperatur ist lediglich eine Rotation der Ethen-Liganden um ihre Bindungsachse zum Nickel-Atom zu beobachten.

Die bisher mitgeteilte chemische Reaktivität von 1 ergibt sich daraus, daß das Zinn- und das Nickel-Atom koordinativ ungesättigt sowie die Ethen-Liganden des Nickels leicht verdrängbar sind. Für die Ethen-Liganden in 1 ist NMRspektroskopisch ein Austausch mit freiem Ethen feststellbar. Durch Umsetzung von 1 mit CO bei -78° C wird der 18-e-Komplex (CO)₃Ni=Sn{CH(SiMe_3)_2} erhalten. Die addition compound $(Me_3P)Ni-cis-\{\eta^3(Ni),\eta^1(Sn)-syn-C_3H_4 CH_{2}_{2}Sn\{CH(SiMe_{3})_{2}\}_{2}$ (5) is formed. When 5 is treated with BPh₃, the phosphane ligand is trapped and, kinetically controlled, Ni-cis-{ $\eta^3(Ni)$, $\eta^1(Sn)$ -syn-C₃H₄CH₂}₂Sn{CH(SiMe_3)₂}₂ (6) is obtained as a stereoisomer of 3. At 40°C 6 slowly rearranges into the thermodynamically stable stereoisomer Ni $trans \{\eta^3(Ni), \eta^1(Sn) - syn - C_3H_4CH_2\}_2 Sn\{CH(SiMe_3)_2\}_2$ (7). Mild protolysis of 3 with pyridine hydrochloride or hydrobromide affords regio- and stereoselectively {(Me₃Si)₂CH}₂(X)SnNi- $(\eta^3-1-\text{MeC}_3H_4)(\text{NC}_5H_5)$ (X=Cl, 8a; Br, 8b). In the course of this protonation reaction one butadiene molecule is eliminated, accompanied by a 2-e reduction of the metal-metal pair Ni(II)/Sn(IV) to Ni(II)/Sn(II) and, at the expense of two Sn-C bonds, reformation of a Ni-Sn bond. All compounds are isolated in high yield and fully characterized by ¹H-, ¹³C-, and ³¹P-NMR spectroscopy.

Komplexe liefern durch Koordination von Donorliganden [H⁻, NH₃, Pyridin, (Me₂N)₃PO] an das Zinn-Atom Addukte des Typs $(\pi$ -Akzeptor)_nNi-Sn{CH(SiMe₃)₂}₂-(Donor). Diese sind in ihren Tieftemperaturformen asymmetrisch, da sich die (Me₃Si)₂CH-Substituenten mit ihren SiMe₃-Gruppen "auf Lücke" anordnen und hierdurch inäquivalent sind. Die genannten Reaktionen am Zinn- oder Nickel-Atom vollziehen sich unter Erhalt der Ni-Sn-Bindung.

Wir berichten über die Synthese und Eigenschaften eines zu 1 analogen 1,6-Heptadien-Komplexes 2 sowie über Reaktionen von 1 und 2 mit Butadien und Isopren und Folgereaktionen der Produkte. Wir behandeln hier überwiegend das kooperative Reagieren der Nickel- und Zinn-Atome unter Spaltung und Neuaufbau von Ni-Sn-Bindungen^[2].

Ergebnisse

A. 1,6-Dien-Komplex $(\eta^2, \eta^2-C_7H_{12})Ni = Sn\{CH(SiMe_3)_2\}_2$ (2)

Versetzt man eine dunkelrote Suspension von 1 in Pentan bei -10° C mit 1,6-Heptadien, so werden die beiden Ethen-Liganden verdrängt, und es entsteht eine Lösung des rotbraunen 1,6-Heptadien-Komplexes 2, der als feinkristalliner, außerordentlich gut löslicher Feststoff analysenrein iso-

Chem. Ber. 1994, 127, 489-500 © VCH Verlagsgesellsch

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

liert werden kann. **2** schmilzt bei 50°C und ist thermisch deutlich beständiger als der Ethen-Komplex 1 (Zers. 0°C). Im Massenspektrum (70 eV, 80°C) von **2** wird das Molekül-Ion bei m/z = 592 als relativ intensives Signal (8%) gefunden. Die hohe Stabilität von (Ligand)Ni(1,6-Heptadien)-Komplexen kann dem ("open-chain-ligand"-)Chelateffekt von 1,6-Dien-Verbindungen zugeschrieben werden^[4].

Für 2 ließ sich (wie für 1) eine Lösungsmittel- ([D₈]Toluol, [D₈]THF) und in [D₈]THF eine Temperaturabhängigkeit der ¹H- und ¹³C-NMR-Spektren feststellen. Bezüglich des 1,6-Heptadien-Liganden zeigen die Spektren die für $L-Ni(\eta^2,\eta^2-C_7H_{12})$ -Komplexe mit trigonal-planar koordiniertem Nickel-Atom und chelatgebundenem 1,6-Dien charakteristischen sieben H- und vier C-Resonanzen^[4,5]. Der Stannylen-Ligand von 2 liefert zwischen +40 und -110°C nur eine SiMe3- und eine SnCH-Resonanz, wobei für die [D₈]Toluol-Lösung die chemischen Verschiebungen weitgehend temperatur*unab*hängig sind $[\delta_{\rm C}$ (SnC), 40°C: 48.1, -80°C: 47.2, -110°C: 47.0]. Daß jeweils nur eine Resonanz beobachtet wird ist insoweit bemerkenswert, als der 1,6-Dien-Nickel(0)-Komplexteil als Nickela-Sechsring mit Sessel-Konformation aufzufassen ist und die Koordinationsebene des Nickels – anders als für $L-Ni(C_2H_4)_2$ -Komplexe mit symmetrischen Liganden L - keine Spiegelebene darstellt. Bei starrer Ni=Sn-Bindung sollten somit zur 1,6-Dien-Brücke "syn"- und "anti"-ständige Substituenten des Stannylen-Liganden verschieden sein, was jedoch nicht beobachtet wird^[6]. Somit lassen die NMR-Spektren von gelöstem 2 ($[D_8]$ Toluol und $[D_8]$ THF) auf eine auch bei -110° C ungehinderte Rotation um die Ni=Sn-Bindung^[3] schließen, d.h. die Energiebarriere dieser Rotation ist sehr klein^[7]. Der Befund, daß nur eine SiMe3-Resonanz auftritt, läßt zudem darauf schließen, daß auch die Rotation der CH(SiMe₃)₂-Substituenten um die Sn-C-Bindungen ungehindert ist^[8].

Das ¹³C-NMR-Spektrum einer [D₈]THF-Lösung von 2 zeigt bei 40°C die auch für die [D₈]Toluol-Lösung beobachteten Signale. Die SnCH-Resonanz (40°C: $\delta_{\rm C} = 48.4$) ist jedoch temperaturabhängig und verändert mit fallender Temperatur ihre Lage zu höherem Feld, wobei der Hochfeldshift bei tiefer Temperatur besonders stark ist (-80°C: 45.0, -100°C: 40.0, -110°C: ca. 34). Demzufolge bildet 2 (analog zu 1) bei tiefer Temperatur ein labiles THF-Addukt 2a, das – obgleich in THF gelöst – bei Temperaturerhöhung dissoziiert.

$$(\eta^2, \eta^2 - C_7 H_{12})$$
Ni-Sn $\{CH(SiMe_3)_2\}_2 \xrightarrow{\Delta T}$
THF

 $(\eta^2, \eta^2 - C_7 H_{12})$ Ni=Sn{CH(SiMe_3)_2}₂ + THF (2)

Orientierende Versuche haben gezeigt, daß 2 mit stärkeren Donoren als THF [(Me₂N)₃PO, C₅H₅N, NH₃] isolierbare Addukte bildet, die zwar nicht detailiert untersucht wurden, aber offenbar ähnliche Eigenschaften wie die Donor-Addukte^[1] von 1 zeigen. Zusammenfassend läßt sich festhalten, daß 1 leichter herstellbar/isolierbar ist, 2 aber den Vorzug der höheren thermischen Stabilität aufweist. In 1 *und* 2 sind die Alken-Liganden leicht verdrängbar, so daß beide Komplexe für Folgereaktionen eingesetzt werden können.

B. Reaktionen von 1 und 2 mit 1,3-Dienen und Folgereaktionen

Ni-cis-{ $\eta^{3}(Ni)$, $\eta^{1}(Sn)$ -anti-C₃H₄CH₂}₂Sn{CH(SiMe_3)₂}₂ (3)

Während bei den Reaktionen von 1 mit 1,6-Heptadien zu 2 und von 1 und 2 mit CO zu $(CO)_3Ni=Sn\{CH-(SiMe_3)_2\}_2$ die Ni=Sn-Bindung^[3] erhalten bleibt, wird diese bei Umsetzung der Komplexe mit Butadien oder Isopren gespalten. Versetzt man rotes, festes 1 oder 2 bei $-50^{\circ}C$ mit Butadien, so erhält man eine klare gelbe Reaktionslösung, aus der sich bei $-78^{\circ}C$ gelbe verwachsene Kristalle des 16e-Komplexes 3 mit 80-90% Ausbeute abscheiden. 2 reagiert dabei merklich langsamer als 1. Die Reaktionen [Gl. (3)] verlaufen stereoselektiv und vollständig, so daß 3 durch Abkondensieren des Butadiens bei tiefer Temperatur feinkristallin, analysenrein und quantitativ gewonnen werden kann.

Zudem läßt sich die Reaktion schon unter äußerst milden Bedingungen (-120°C) vollziehen, wie folgender Versuch zeigt: Überschichtet man festes 1 (-120°C) mit gerade noch flüssigem Butadien (Schmp. -109°C) und hält die Temperatur bei -120°C, so liegt rotes 1 mit einer überstehenden festen, farblosen Butadien-Phase vor. Im Verlauf einer Stunde löst sich 1 auf, und die feste Butadien-Phase nimmt die typisch gelbe Farbe von 3 an. Für einen als Primärprodukt anzunehmenden Bis(butadien)-Zwischenkomplex "(η^2 -C₄H₆)₂Ni=Sn{CH(SiMe_3)_2}₂" wäre aber wie für die anderen Alken-Ni(0)/Sn(II)-Komplexe (1, 2) eine durch die Stannylen-Komponente hervorgerufene (tief)rote Farbe zu erwarten gewesen. Da eine Rotfärbung der Butadien-Phase nicht beobachtet wird, ist ein solcher Primärkomplex

auch bei -120 °C offenbar sehr kurzlebig und nicht nachweisbar.

3 löst sich in allen Lösungsmitteln hervorragend. Außer aus Butadien kristallisiert es aus diesen in der Regel nicht wieder aus. Festes 3 ist deutlich weniger luftempfindlich als 1 oder 2; es zersetzt sich oberhalb -10° C zu einem Gemisch noch nicht identifizierter Substanzen. Im IR-Spektrum (KBr, -60°C; Tab. 1) auftretende (intensitätsschwache) Banden deuten auf das Vorliegen substituierter π -Allyl-Gruppen^[9] hin; die Stereochemie der Allyl-Gruppen war hieraus jedoch nicht abzuleiten. Im Massenspektrum (70 eV, 45°C) tritt das Molekül-Ion M⁺ 604 (1%) auf. Dieses fragmentiert durch den Ausstoß des Nickel-Atoms zum Ion $[(C_8H_{12})Sn{CH(SiMe_3)_2}_2]^+$ (546, 1.4%), für das wir eine Stannacyclononadien-Struktur mit cis-substituierten Doppelbindungen annehmen^[2c]. Für die Bildung des Stannadien-Neunrings ist offenbar die anti-Substitution des Allyl-Systems in 3 entscheidend (das unten beschriebene Isomer 6 mit syn-substituiertem Allyl-System zeigt einen anderen Zerfallsweg). Die weitere Fragmentierung des Stannacyclononadien-Ions erfolgt durch zweifache Butadien-Eliminierung zum Stannylen-Ion [Sn{CH(SiMe₃)₂}₂]⁺ (438, 16%).

Erwärmt man die gelbe Butadien-Lösung von **3** in einem Druckgefäß auf 20°C, so färbt sich die Lösung rot, und es tritt langsam (2 d) eine Volumenkontraktion ein. Im Kondensat der Reaktionslösung können *trans, trans, trans*-1,5,9-Cyclododecatrien (cdt) zu 55% des eingesetzten Butadiens sowie weitere cdt-Isomere (6% des Butadiens) nachgewiesen werden. Dimerisierungsprodukte des Butadiens (3-Vinyl-1-cyclohexen, 1,5-Cyclooctadien) liegen lediglich zu jeweils etwa 1% vor. Die Rotfärbung^[10a] und die Produktverteilung^[10b] sind für "nacktes Nickel"^[10c] charakteristisch, d.h. **3** verhält sich wie ein typischer Bis(π -allyl)nickel(II)-Komplex.

3 gelöst in Pentan geht mit Pyridin zwischen -78 und 0°C keine Addukt-Bildung ein [im Unterschied zu den Ni(0)/Sn(II)-Komplexen 1 und 2]. Demnach weist das Zinn-Atom von 3 keine freie Koordinationsstelle auf. 3 bildet allerdings mit PMe₃ bei -78°C unter Komplexierung des Nickels ein Addukt 5 (siehe unten); somit ist das Nickel-Zentrum in 3 koordinativ ungesättigt.

NMR-Spektren und Struktur von 3

Das 400-MHz-¹H-NMR-Spektrum (-50° C) von 3 (Tab. 2) zeigt^[11] vier gut aufgelöste Multipletts, die aufgrund ihrer chemischen Verschiebungen und Kopplungen zwei äquivalenten, in *anti*-Stellung monosubstituierten η^3 -Allyl-Gruppen zugeordnet werden^[12]. So gelten die Signallagen der Allyl-Protonen als besonders charakteristisch für das Substitutionsmuster eines Allyl-Systems, da *syn*-Protonen generell weniger stark abgeschirmt sind als die (Metall-näheren) *anti*-Protonen mit zwei *cis*-ständigen vicinalen H-Atomen sowie mit einem *trans*-ständigen H-Atom. Substituent des Allyl-Systems ist eine $-CH_aH_bSn$ -Gruppe mit inäquivalenten geminalen Protonen. Diese Protonen zeigen Kopplungen zueinander, zu dem benachbarten (*syn*-)Proton

der Allyl-Gruppe und dem Zinn-Atom $[^2J(SnH) = ca. 38]$, 51 Hz]^[14]. Die beiden CH(SiMe₃)₂-Reste des Zinns sind inäquivalent; für sie werden zwei intensitätsgleiche Signale für die SnCH-Protonen [$\delta = -0.26$, ² $J(^{119}SnH) = 80$; -0.55, ² $J(^{119}\text{SnH}) = 71$ Hz] und die SiMe₃-Protonen ($\delta =$ 0.23, 0.02) gefunden. Im 75.5-MHz-¹³C-NMR-Spektrum^[12] von 3 (-50°C; Tab. 2) beobachtet man für zwei Butendiyl-Gruppen vier intensitätsgleiche Signale mit einer alternierenden Verminderung der Kopplungskonstanten ⁿJ(SnC) mit zunehmender Bindungsanzahl n, wie sie für Zinn-Verbindungen typisch ist^[15]. Die Sn-Methin-C-Atome liefern zwei Signale bei $\delta = 5.6$, 5.1 mit ¹J(SnC) = ca. 72 und 96 Hz; diese Kopplungen sind zwar unerwartet klein, lassen sich aber an Vergleichsverbindungen verifizieren^[2c,16]. Desgleichen werden zwei Signale für SiMe₃-Gruppen ($\delta = 4.2$, 3.8) erhalten.

Aus den NMR-Spektren geht hervor, daß 3 die bei der Synthese [Gl. (3)] eingebrachten Butadien-Moleküle als äquivalente Butendiyl-Liganden -CH2-CH=CH-CH2enthält; deren zentrale -CH=CH-Bindung ist cis-substituiert. Die Butendiyl-Liganden sind η^3 an quadratischplanar koordiniertes Nickel(II) und über das verbleibende terminale C-Atom η^1 an tetraedrisch koordiniertes Zinn gebunden. Somit liegen in 3 zwei äquivalente, an Nickel(II) η³-koordinierte Allyl-Gruppen mit einem CH₂Sn-Substituenten in anti-Stellung vor. Für die Koordination der Allyl-Gruppen an Nickel(II) sind cis- und trans-Konfigurationen^[12] denkbar; an einem Modell läßt sich aber leicht zeigen, daß bei anti-Substitution des Allyl-Systems kein Stereoisomeres von 3 mit trans-ständigen Allyl-Gruppen möglich ist. Aus der Inäquivalenz der am Zinn-Atom befindlichen CH(SiMe₃)₂-Substituenten (die beiden SiMe₃-Gruppen eines jeden Restes sind äquivalent) folgt, daß der Komplex als Symmetrieelement keine C_2 -Achse, sondern eine Spiegelebene trägt, in der das Nickel-Atom, das Zinn-Atom und dessen Methin-Gruppen liegen (C_S -Symmetrie), vereinbar mit einer cis-Konfiguration der n³-Allyl-Gruppen.

Durch Verbrückung der Nickel- und Zinn-Atome durch die Butendiyl-Liganden liegt ein Ringsystem vor. Um die Konformation des Ni(μ -butendiyl)₂Sn-Rings zu beschreiben, ist es sinnvoll, den Sechsring zu betrachten, der sich aus dem Zinn-Atom, den Methylen- und Nachbar-Allyl-C-Atomen und dem Nickel-Atom ergibt. Für diesen Sechsring ist eine Sessel-Konformation anzunehmen, da bei einer Wannen-Konformation eine starke sterische Wechselwirkung einer CH(SiMe₃)₂-Gruppe mit dem Nickel-Atom aufträte. Somit ergibt sich der in Gl. (3) dargestellte Molekülaufbau von **3**.

Zum Reaktionsablauf der Bildung von 3

Für die Reaktion von 1 und 2 mit Butadien [Gl. (3)] läßt sich im ersten Reaktionsschritt eine Verdrängung der beiden Alken-Gruppen durch zwei Butadien-Moleküle und die Bildung eines Primär-Komplexes $(\eta^2-C_4H_6)_2Ni=Sn\{CH-(SiMe_3)_2\}_2^{\circ}$ postulieren. Zwar konnte eine solche Zwischenstufe bis $-120^{\circ}C$ nicht nachgewiesen werden; sie erscheint

Offenbar kann sich ein intermediärer Bis(butadien)-Ni-SnR₂-Komplex in einer intramolekularen Reaktion äußerst leicht in 3 umwandeln. Diese Umwandlung beinhaltet eine Oxidation von Ni(0) zu Ni(II) und von Sn(II) zu Sn(IV) bei zugleich eintretender zweifacher Reduktion der beiden Butadien-Liganden zu formalen Butendiyl-Dianionen; insgesamt läuft also ein 4-e-Redox-Prozeß ab. In einem ersten Reaktionsschritt ist eine Oxidation des Nickels zu Ni(II) unter formal einfacher Reduktion der Butadien-Liganden zu Butenyl-Radikalanionen anzunehmen. Diese kombinieren jedoch nicht miteinander^[17], sondern mit dem Sn(II)-Zentrum. Hierdurch wird dieses zu Sn(IV) oxidiert, und die formalen Butenyl-Radikalanionen werden durch die nochmalige Reduktion in Butendiyl-Dianionen übergeführt. Die Oxidation der Metalle bewirkt eine Spaltung der Ni=Sn-Bindung; hiermit geht der Aufbau zweier Sn-C-Bindungen einher. Da einerseits bei anti-Substitution der Allyl-Gruppen ein zu 3 Isomeres mit trans-Allyl-Konfiguration sterisch nicht möglich ist, andererseits aber die Stereoisomere mit syn-substituiertem Allyl-System und cis- (6) oder trans-Konfiguration (7) der Allyl-Gruppen herstellbar und höchst wahrscheinlich thermodynamisch stabiler sind (siehe unten), ist für die Bildung von 3 nach Gl. (3, 4) eine kinetische Reaktionskontrolle anzunehmen, die primär zur anti-Substitution des Allyl-Systems führt, aus der sich dann die cis-Konfiguration der beiden Allyl-Gruppen ergibt.

Die Reaktion nach Gl. (3) verläuft für den Ethen-Komplex 1 bei weitaus tieferer Temperatur, als jeweils die Einzelkomponenten seiner Herstellung Ni(C_2H_4)₃ (> -50°C)^[18] und Sn{CH(SiMe₃)₂}₂ (> -30°C)^[2c] mit Butadien reagieren. Dies legt den Schluß nahe, daß der Ladungsabzug der Butadien-Liganden vom Nickel-Atom und die Donorwirkung des Stannylens^[1,18] zum Nickel-Atom *kooperativ* den Prozeß nach Gl. (3, 4) auslösen.

$Ni-cis-{\eta^{3}(Ni),\eta^{1}(Sn)-anti-C_{3}(3-Me)H_{3}CH_{2}}_{2}Sn-{CH(SiMe_{3})_{2}}_{2}(4)$

Die roten Suspensionen von 1 und 2 in Pentan reagieren mit Isopren bei -30° C innerhalb einer Stunde quantitativ

zu einer hellgelben Lösung, aus der nach Abkondensieren des Lösungsmittels im Vakuum 4 als feinkristalliner, hellgelber und analysenreiner Feststoff zurückbleibt. In der bei -30° C nur langsamen Bildung von 4 (Isopren) besteht ein deutlicher Unterschied zu der bei -100° C raschen Bildung von 3 (Butadien). Eine zu Gl. (3, 5) analoge Reaktion von 1, 2 mit 2,3-Dimethylbutadien findet nicht statt. Thermische Stabilität (langsame Zersetzung bei -10° C) und die außerordentlich gute Löslichkeit von 4 in den üblichen Solvenzien entsprechen denen von 3. Komplex 4 ließ sich nicht unzersetzt verdampfen. Sein IR-Spektrum (Tab. 1) weist auf das Vorliegen eines Allyl-Systems hin. Der 16-e-Komplex 4 unterscheidet sich vom Grundkörper 3 nur durch die *meso*-Methyl-Substitution des Allyl-Systems.

NMR-Spektren, Struktur und Bildung von 4

Bereits aus dem Vergleich der NMR-Daten der C₄H₆-Liganden (Tab. 2) ist für 4 auf eine ähnliche Struktur wie für 3 zu schließen. So beobachtet man im 200-MHz-¹H-NMR-Spektrum (-80°C) gleichfalls die Signale äquivalenter η^3 -Allyl-Gruppen mit einem anti-ständigen -CH_aH_bSn-Substituenten; zudem tragen die n³-Allyl-Gruppen in meso-Stellung einen Methyl-Substituenten ($\delta = 1.38$). Entsprechend treten im ¹³C-NMR-Spektrum (-30°C) gleichintensive Signale der Allyl-Gruppen und der an Zinn gebundenen Methylen-Gruppen [mit alternierender Größe der Kopplung ⁿJ(SnC)] sowie der meso-ständigen Methyl-Gruppen ($\delta = 25.2$) auf. Für eine (von 3) unabhängige Ableitung der synlanti-Substitution der Allyl-Gruppen kann aufgrund der meso-Methyl-Gruppe zwar keine entsprechende, sonst aussagekräftige vicinale H,H-Kopplung herangezogen werden, jedoch ist auch aus der ¹³C-Signallage der meso-Methyl-Gruppe die anti-Substitution zu folgern^[19]. In den ¹H-, ¹³C-NMR-Spektren werden jeweils zwei Signale der SnCH- und SiMe₃-Gruppen erhalten, so daß die CH(SiMe₃)₂-Reste inäquivalent sind und somit der Komplex C_S -Symmetrie aufweist; hieraus ergibt sich die cis-Anordnung der Allyl-Gruppen. Wiederum sind für die SnCH-Gruppen die Kopplungen ${}^{1}J({}^{119}SnC) = 63$ und 88 Hz sehr klein.

Der Mechanismus der Bildung von 4 ist wie für 3 anzunehmen. Für die *anti*-Substitution sind jedoch nicht nur kinetische Gründe in Betracht zu ziehen, sondern diese ist für 4 auch thermodynamisch begünstigt, da der *meso*-Substituent die benachbarten *syn*-Positionen sterisch behindert^[20]. Somit sind bei der Reaktion nach Gl. (5) aus den Isopren-Molekülen regiospezifisch 3-Methylbut-2-en-1,4diyl-Liganden mit η^1 -Bindung an Zinn und η^3 -Bindung an Nickel entstanden.

Zur Reaktion von 4 mit PMe_3

Eine Pentan-Lösung von 4 reagiert mit PMe₃ schon bei -78° C zu einer magentaroten Lösung, aus der jedoch kein definiertes Produkt gewonnen werden konnte. Nach vorläufigen NMR-spektroskopischen Befunden erfährt der Komplex dabei einen Abbau mit Rückbildung des freien Stannylens. Hierin liegt ein Unterschied zur Reaktion von 3 mit PMe₃, die unter *anti* \rightarrow *syn*-Isomerisierung des Allyl-Systems zu dem nachfolgend beschriebenen beständigen PMe₃-Addukt 5 führt. Möglicherweise destabilisiert die *meso*-Methyl-Gruppe das (zu 5 analoge) PMe₃-Addukt eines *syn*-Isomeren von 4, so daß ein solcher Komplex rasch zerfällt.

$(Me_3P)Ni$ -*cis*-{ $\eta^3(Ni)$, $\eta^1(Sn)$ -*syn*-C₃H₄CH₂}₂Sn{CH-(SiMe_3)_2}₂ (5)

Versetzt man die gelbe Pentan-Lösung von 3 bei -78° C mit der äquimolaren Menge PMe₃, so färbt sich die Lösung sofort rot. Bei -78° C fallen im Verlauf von zwei Tagen feine orangefarbene Nadeln von 5 in 75proz. Ausbeute aus. Der 18-e-Komplex 5 ist an der Luft kurzzeitig beständig und zersetzt sich als Feststoff langsam bei -10° C. Die Substanz ist in Pentan, Ether und THF gut löslich. Die Lösungen färben sich bei -30° C langsam dunkler, bei 20°C sind die Lösungen trübe und gelb. Im ³¹P-NMR-Spektrum treten dabei mehrere Signale auf [z.B. für Ni(PMe₃)₄ $\delta = -20.3$]; offenbar zersetzt sich 5 in Lösung oberhalb -30° C auf uneinheitliche Weise.

5 läßt sich nicht unzersetzt verdampfen. Im Massenspektrum (78°C) beobachtet man als größte Masse das durch Abspaltung des PMe₃-Liganden entstandene Fragment 604 (1%). Dieser Befund zeigt zum einen, daß die Bindung des PMe₃-Liganden an das Ni(II)-Zentrum relativ schwach ist, wie dies auch aus dem Lösungsverhalten von 5 hervorgeht (NMR). Des weiteren entspricht diese Massenzahl zwar der von 3 (*anti*-substituiertes Allyl-System); das aus 5 entstandene Fragment enthält jedoch ein *syn*-substituiertes Allyl-System, und somit stimmt es mit dem Molekül-Ion des *syn*-Isomeren (von 3) überein. Dieses *cis-syn*-Isomere 6 wird nachfolgend beschrieben, so daß bezüglich der weiteren Fragmentierung von 5 auf die Ausführungen zu 6 verwiesen werden kann. Signifikante IR-Daten von 5 sind Tab. 1 zu entnehmen.

NMR-Spektren und Struktur von 5

Im 400-MHz-¹H-NMR-Spektrum $(-80^{\circ}C)$ von 5 (Tab. 2) beobachtet man vier aufgelöste Multipletts allylischer Protonen, wobei zum *meso*-Proton zwei *trans*- und eine *cis*-

Kopplung vorliegen; von daher ist das Allyl-System synsubstituiert. Alle Protonen des Allyl-Systems koppeln mit Phosphor. Die geminalen Protonen $-CH_aH_bSn$ des syn-Allyl-Substituenten sind inäquivalent. Für die unterschiedlichen CH(SiMe_3)_2-Substituenten treten jeweils zwei Singuletts der Methin- und SiMe_3-Protonen auf (die SiMe_3-Gruppen des jeweiligen Substituenten sind äquivalent). Mit steigender Temperatur (-30° C) werden die Signale der Butendiyl-Liganden breit.

Das ¹³C-NMR-Spektrum (-80°C) von **5** (Tab. 2) zeigt drei Signale allylischer C-Atome, wobei das *meso*-C-Atom eine Kopplung ²J(PC) = 5.6 Hz sowie eine im Vergleich zu den übrigen Komplexen kleine Kopplung ³J(SnC) aufweist. Das Signal der CH₂Sn-Gruppen ist breit. Von den für die beiden CH(SiMe₃)₂-Substituenten beobachteten Methin-Signalen ist eines scharf ($\delta = 7.2$) und zeigt die außerordentlich niedrige Kopplung ¹J(SnC) = 26 Hz [siehe **3**: ¹J(SnC) = 72, 96 Hz] und eines ist breit [$\delta = 1.5$; ¹J(SnC) hier nicht bestimmbar]. Die beiden Substituenten liefern zudem zwei SiMe₃-Signale. Mit Temperaturerhöhung werden die breiten CH₂Sn- und SnCH-Signale bis - 50°C zunächst schärfer. Bei - 30°C sind bei unveränderten Signallagen vor allem die drei Allyl-C-Atom-Signale und das PMe₃-Signal breit (CH₂Sn bleibt scharf).

Die ¹H- und ¹³C-NMR-Signalmuster der Allyl-Gruppen des PMe₃-Addukts 5 entsprechen denen des PMe₃-freien *cis-syn*-Isomeren 6, jedoch sind in 5 die ¹H- ($\Delta\delta = 0.5-1$) und ¹³C-Kerne ($\Delta\delta = 9-17$) infolge der Donorwirkung des PMe₃-Liganden stärker als in 6 abgeschirmt.

Das ³¹P-NMR-Spektrum von 5 zeigt bei -80° C für die PMe₃-Resonanz ($\delta = -14.1$) eine schwache Kopplung J(SnP) = ca. 20 Hz. Bei Erwärmung der Probe verschiebt sich das Signal (-30° C: $\delta = -15.7$) in Richtung der Signallage von freiem PMe₃ ($\delta = -63.0$) und wird breiter.

Laut NMR-Spektren ist für das Nickel(II)-Ion in 5 eine quadratisch-pyramidale Koordinationsgeometrie anzunehmen, bei der zwei Allyl-Gruppen die basalen Positionen und der PMe₃-Ligand die apicale Position besetzen. Die Kopplung des meso-Allyl-C-Atoms mit Phosphor ist für dieses Bindungselement typisch^[21]; als Modell-Komplex kann (Me₃P)Ni(η^3 -C₃H₅)₂ mit bekanntem Molekülaufbau gelten^[22]. Aus den unterschiedlichen CH(SiMe₃)₂-Substituenten mit jeweils äquivalenten SiMe3-Gruppen ist (wie für 3, 4, 6) auf einen C_{S} -symmetrischen Aufbau und somit auf eine cis-Anordnung der Allyl-Gruppen zu schließen. Betrachtet man den Sechsring, der definiert ist durch das Nickel-Atom, die syn-substituierten Allyl-C-Atome, die Methylen-C-Atome und das Zinn-Atom, so sind zwei Konformationen bezüglich der Ausrichtung des Sn{CH(Si- $Me_3)_2$ ₂-Zwischengliedes denkbar. Von diesen erscheint uns die in Gl. (6) dargestellte Konformation mit einem zickzack-förmigen Verlauf der C₄-Sn-C₄-Kette aufgrund relativ geringer sterischer Behinderungen als die energetisch günstigste.

Die Temperaturabhängigkeit der NMR-Spektren erklären wir so, daß die bei tiefer Temperatur (-80° C) beobachteten Signalverbreiterungen (insbesondere des ¹³CH₂Sn-Signals und eines der beiden Sn¹³CH-Signale) durch einen

Zum Reaktionsverlauf der Bildung von 5

Wie dargelegt zeigen 3 und 5 ähnliche Grundstrukturen mit einer über zwei Allyl-Systeme an Nickel gebundenen C₄-Sn-C₄-Kette, jedoch sind die Allyl-Gruppen in 3 antiund in 5 syn-substituiert. In der Regel sind syn-substituierte Allyl-Komplexe thermodynamisch stabiler als anti-substituierte, sofern nicht zusätzliche Effekte auftreten (z.B. meso-Substituenten, die die syn-Position sterisch behindern, siehe 4)^[20]. 3 (cis-anti) kann sich thermisch nicht in das cissyn-Isomere (6) umwandeln. Eine solche anti \rightarrow syn-Umwandlung wird jedoch bei der Reaktion von 3 mit PMe₃ zu 5 durch den PMe₃-Liganden induziert. Der Mechanismus dieser Umwandlung kann durch eine $\eta^3 \rightarrow \eta^1$ -Isomerisierung der Allyl-Gruppen mit Bildung zwischenzeitlich unkomplexierter Vinyl-Gruppen, deren 180°-Drehung um die Bindung zum (an Nickel gebundenen) Nachbar-C-Atom und erneute Koordination als π -Allyl-Gruppen erklärt werden. Während ohne den Phosphan-Liganden im $\eta^3 \rightarrow \eta^1$ -Isomerisierungsschritt ein thermodynamisch ungünstiger 14-e-Ni(II)-Komplex resultieren würde, wird unter Einfluß von PMe₃ ein (quadratisch-planarer) 16-e-Zwischenkomplex durchlaufen. Für an Nickel gebundene Allyl-Gruppen sind $\eta^3 \rightarrow \eta^1 \rightarrow \eta^3$ -Isomerisierungen mit Austausch der syn/ anti-Positionen gut bekannt^{[22].}

Ni-cis-{ $\eta^{3}(Ni), \eta^{1}(Sn)$ -syn-C₃H₄CH₂}₂Sn{CH(SiMe₃)₂}₂ (6)

Die bei -30°C erhaltenen NMR-Spektren von 5 ließen eine partielle Dissoziation des Komplexes unter Phosphan-

Freisetzung erkennen; dabei blieb das syn-substituierte Allyl-System erhalten. Dieser Befund legte nahe, 5 mit Bortriorganylen als schwachen Lewis-Säuren umzusetzen, um so durch Abfangen des PMe₃-Liganden den zu 3 isomeren Komplex 6 mit syn-substituiertem Allyl-System herzustellen. Versetzt man dementsprechend eine orangerote Pentan-Lösung von 5 mit der äquimolaren Menge von festem BPh₃ und rührt bei -30° C 12 h, so geht letzteres in Lösung, diese nimmt eine orangegelbe Farbe an, und es fällt farbloses Ph₃B·PMe₃^[23] feinkristallin aus. Nachdem das Addukt durch Filtrieren abgetrennt und die Reaktionslösung im Hochvakuum zu einem Öl eingeengt (-30°C) worden ist, läßt sich der 16-e-Komplex 6 aus Butadien bei -78°C in Form eines gelben, verwachsenen Kristallisats gewinnen (51%). Das IR-Spektrum (Tab. 1) läßt ein Allyl-System erkennen; wie aus den NMR-Spektren hervorgeht, ist 6 das cis-syn-Isomere von 3 (cis-anti).

Da das *cis-syn*-Isomere 6 mittelbar über das PMe₃-Addukt 5 aus dem *cis-anti*-Isomeren 3 gewonnen wird, ist anzunehmen, daß 6 thermodynamisch stabiler ist als 3. Damit sollte sich 3 eventuell PMe₃-katalysiert in 6 überführen lassen. Bringt man jedoch eine Pentan-Lösung von 3 mit einer geringen Menge PMe₃ zwischen -78 und -30° C zur Reaktion, so setzt sich zwar ein Teil von 3 mit PMe₃ nach Gl. (6) zu 5 um, jedoch bleibt die Hauptmenge 3 unverändert erhalten. Das Ausbleiben einer PMe₃-katalysierten Isomerisierung von 3 in 6 unterhalb -30° C ist so zu erklären, daß in diesem Temperaturbereich das primär gebildete PMe₃-Addukt 5 nur wenig dissoziiert. Oberhalb -30° C setzt neben der reversiblen Dissoziation eine merkliche Zersetzung von 5 ein, wobei sich sehr stabiles Ni(PMe₃)₄ neben anderen Komponenten bildet. Das als Nickel(0)-Komplex abgefangene PMe₃ steht somit für eine erneute Reaktion mit 3 nicht zur Verfügung.

6 schmilzt bei ca. 20°C und löst sich (wie 3) in den üblichen Lösungsmitteln hervorragend. In Lösung ist es nur unterhalb 0°C für längere Zeit beständig; bei 20°C tritt eine langsame Isomerisierung zu 7 ein (siehe unten). Im Massenspektrum (70 eV, 90°C) von **6** wird das Molekül-Ion M⁺ 604 (1.4%) beobachtet. Dessen Fragmentierung wird durch eine *zweifache, schrittweise Butadien-Abspaltung* zum Nikkel-haltigen Ion [Ni=Sn{CH(SiMe_3)_2}_2]⁺ (496, 12%; siehe Fragmentierungen von **1**, **2**) eingeleitet; aus diesem wird dann das Nickel-Atom freigesetzt mit Bildung des Stannylen-Ions [Sn{CH(SiMe_3)_2}_2]⁺ (438, 5%). Die Sequenz der Fragmentierung des *cis-syn*-Isomeren **6** unterscheidet sich damit grundsätzlich von der des *cis-anti*-Isomeren **3** (für das offenbar ein Stannacyclononadien-System mit *cis*-substituierten Doppelbindungen durchlaufen wird). Würde die

Fragmentierung von 6 analog zu der von 3 verlaufen, so wäre ein Stannadien-Neunring mit zwei *trans*-substituierten C=C-Bindungen zu erwarten. Ein solcher ist, wie eine Modellbetrachtung zeigt, nicht realisierbar, so daß M⁺ von 6 sich hierüber nicht stabilisieren kann. 6 weicht deshalb einem solchen Zerfallsweg durch die primäre Eliminierung von Butadien anstelle des Nickels aus.

NMR-Spektren und Struktur von 6

Die NMR-Spektren von 6 (Tab. 2) werden am besten bei -30°C aufgenommen, da sich 6 bei 30°C langsam in das (trans-syn-)Isomere 7 umwandelt. Prinzipiell lassen sich jedoch für 6 bei 30°C scharf aufgelöste Spektren erhalten (anders als für 3-5); 6 ist somit thermisch deutlich stabiler als die vorgenannten Derivate. Das 300-MHz-1H-NMR-Spektrum von 6 zeigt das typische Signalmuster η^3 an Nikkel und n¹ an Zinn gebundener Butendivl-Liganden, wobei die meso-Allyl-Protonen mit einem cis- und zwei trans-ständigen vicinalen Protonen koppeln. Die -CH_aH_bSn-Protonen sind inäquivalent; gleichfalls sind die CH(SiMe₃)₂-Substituenten inäquivalent und liefern jeweils zwei Singuletts der SnCH- und SiMe₃-Protonen. Das ¹³C-NMR-Spektrum von 6 zeigt drei Signale allylischer C-Atome und ein jetzt (vergl. 5) scharfes Signal der CH₂Sn-Gruppen. Ebenso sind beide SnCH-Signale scharf; deren Kopplungen ${}^{1}J(SnC) =$ 56 und 65 Hz sind abermals relativ klein, aber größer als in 5. Die NMR-Spektren von 6 belegen die syn-Substitution des Allvl-Systems; zudem folgt aus der Inäquivalenz der CH(SiMe₃)₂-Substituenten die cis-Stellung der Allyl-Gruppen (C_{S} ; Spiegelebene durch Ni und SnCH). Demnach weist (PMe₃-freies) 6 das gleiche Grundgerüst wie das PMe₃-Addukt 5 auf und stellt das cis-syn-Isomere von 3 (cis-anti) dar.

Tab. 1. Signifikante IR-Banden (KBr) der Allyl-Systeme von 3-6

	v C-H $[cm^{-1}]$	v _s CCC [ci	m^{-1}) v CCC [cm ⁻¹]	$\delta \text{ CH}_2 \text{ [cm}^{-1}\text{]}$
3 ^[a]	3058w, 3019w	1490w	1170w, 1125w, 1107m	965m
4	3050m, 3010m	1488w	1125w, 1104m, 1080m	967s
5	3062w	1488w	1190m, 1132w, 1095w	963s
6	3060m	1495m	1190m, 1135m, 1105m	945s

^[a] - 60°C.

Ni-trans-{ $\eta^3(Ni)$, $\eta^1(Sn)$ -syn-C₃H₄CH₂}₂Sn{CH(SiMe_3)₂}₂ (7)

Wird eine gelbe Lösung von **6** auf oberhalb 0°C erwärmt, so nimmt diese langsam eine rotbraune Farbe an. NMRspektroskopisch läßt sich zeigen, daß nach ca. 3 Tagen bei 22°C oder 5 Stunden bei 67°C (THF, Rückfluß) sich zu ca. 65% das *trans-syn*-Isomere **7** (16-e) gebildet hat. Eine weitere Anreicherung von **7** erfolgt offenbar nicht, so daß **6** (35%) und **7** (65%) vermutlich im Gleichgewicht stehen. Es gelang bislang nicht, diese Mischung oder aus der Mischung eine der Komponenten zu kristallisieren, so daß **7** als Bestandteil des nach Einengung erhaltenen Öls NMR- spektroskopisch charakterisiert wurde (eine sichere Zuordnung der IR-Banden war nicht möglich).

NMR-Spektren und Struktur von 7

Das ¹H-NMR-Spektrum von 7 (Tab. 2) zeigt für das Allyl-System zweier η^3 an Nickel und η^1 an Zinn gebundener, äquivalenter Butendiyl-Liganden ein meso-Allyl-Protonen-Signal mit einer cis- und zwei trans-Kopplungen zu vicinalen Allyl-Protonen. Die –CH_aH_bSn-Protonen sind inäquivalent; für die jetzt äquivalenten CH(SiMe₃)₂-Substituenten werden *eine* SnCH-Resonanz ($\delta = -0.25$; 2H) und zwei Signale diastereotoper SiMe₃-Gruppen ($\delta = 0.13, 0.12$) erhalten. Entsprechend enthält das ¹³C-NMR-Spektrum (Tab. 2) für die Butendiyl-Liganden gleichintensive scharfe Signale allylischer C-Atome und der CH2Sn-Gruppen sowie eine SnCH-Resonanz ($\delta = 6.9$; 2 C) mit einer (kleinen) Kopplung ${}^{1}J(SnC) = 68$ Hz und zwei Signale diastereotoper Si-Me₃-Gruppen ($\delta = 4.3, 4.1$). Die NMR-Spektren von 7 belegen das Vorliegen zweier äquivalenter, syn-substituierter Allyl-Systeme; aus der Äquivalenz der CH(SiMe₃)₂-Substituenten mit diastereotopen SiMe₃-Gruppen ist auf die C_2 -Symmetrie des Komplexes und damit die trans-Stellung der Allyl-Gruppen schließen. Somit ist 7 (trans-syn) das Strukturisomere zu 3 (cis-anti) und 6 (cis-syn).

C. Partielle Protolyse von 3: { $(Me_3Si)_2CH}_2(X)SnNi-(\eta^3-1-syn-MeC_3H_4)(NC_5H_5)$ (X = Cl, 8a; Br, 8b)

In den Ni(II)-*cis/trans*-{ $\eta^3(Ni), \eta^1(Sn)$ -*syn/anti*-butendiyl}₂Sn(IV)R₂-Komplexen 3–7 trägt das Zinn-Atom zwei Arten von Substituenten, von denen die allylartigen Substituenten eine größere Reaktivität z.B. gegenüber elektrophilen Reagenzien als die Alkyl-Reste erwarten lassen^[24]. In dieser Hinsicht wurde exemplarisch das protolytische Verhalten von 3 untersucht. Bei Umsetzung einer Pentan-Lösung von 3 mit HCl-Gas im Überschuß (20°C) bildet sich ein gelber Niederschlag von NiCl₂. Nach dessen Abtrennung kristallisiert aus der eingeengten Lösung farbloses {(Me₃Si)₂CH}₂SnCl₂^[25] mit 85% Ausbeute. Anders verläuft die Reaktion von 3 mit äquimolaren Mengen HCl oder HBr als Pyridin-Addukten.

Eine gelbe THF-Lösung von 3 färbt sich bei Zugabe einer stöchiometrischen Menge an festem Pyridin-hydrochlorid oder -hydrobromid bei -30° C orangerot. Die nach Abkondensieren des Lösungsmittels verbleibenden Rohprodukte werden mit Pentan extrahiert. Aus den Pentan-Lösungen kristallisieren bei -78 °C orangerotes **8a** (79%) und **8b** (44%). Im Kondensat des Lösungsmittels wird gaschromatographisch 1 Moläquivalent freigesetztes Butadien nachgewiesen. Die Komplexe **8a** (Schmp. 76°C) und **8b** (Schmp. 85°C) sind nicht verdampfbar, gegenüber Luft sind sie nahezu unempfindlich. Die Verbindungen lösen sich in Pentan mäßig, in Ether und THF sehr gut. Für die Reaktionen nach Gl. (10) scheint wesentlich zu sein, daß die festen Pyridinium-Verbindungen sich nur langsam nachlösen. Sie reagieren somit bevorzugt mit **3**, ohne eine weitere Protolyse von **8a**, **b** herbeizuführen. Auch ein die Reaktion lenkender Einfluß des Pyridins, das als Ligand in **8a**, **b** eintritt, ist denkbar.

In den IR-Spektren (KBr) von **8a**, **b** sind die Streckschwingungsbanden des Allyl-Systems von denen des Pyridin-Liganden teilweise überlagert, so daß nur die Banden bei 1110 ($v_{as}CCC$) und 955 cm⁻¹ (δCH_2) auf ein Allyl-System hindeuten^[26].

NMR-Spektren und Struktur von 8a, b

Im 400-MHz-¹H-NMR-Spektrum von **8a** (X = Cl) werden für die 1-Methylallyl-Gruppe fünf Signale gefunden (Tab. 3). Die *syn*-Stellung der Methyl-Gruppe ist aus der vicinalen Kopplung des zum gleichen Allyl-C-Atom gehörenden *anti*-Protons mit dem *meso*-Proton [³J(HH) = 13.2 Hz] abzuleiten. Die Signallagen fallen in die erwarteten Bereiche (vgl. Tab. 2). Das =CH_{anti}Me-Proton zeigt bemerkenswerterweise keine Kopplung mit dem quasi-*trans*-ständigen Zinn-Atom. Die beiden CH(SiMe₃)₂-Substituenten des prochiralen Zinn-Atoms liefern zwei SnCH- und vier SiMe₃-Signale. Das ¹H-NMR-Spektrum von **8b** (X = Br) stimmt mit dem von **8a** fast überein.

Das 75.5-MHz-¹³C-NMR-Spektrum von **8a** zeigt für die 1-Methylallyl-Gruppe vier Signale (Tab. 3). Die Kopplungen J(SnC) spiegeln die *trans*-Stellung des Zinn-Liganden zum Methyl-substituierten Allyl-C-Atom wider. Für die beiden CH(SiMe₃)₂-Substituenten des Zinn-Atoms sind die SnCH-Resonanzen isochron ($\delta = 13.9$), aber ihre Inäquivalenz leitet sich aus zwei unterschiedlichen Kopplungen ${}^{1}J(SnC) = 141$ und ${}^{1}J(SnC') = 124$ Hz ab; die SiMe₃-Resonanzen sind teilweise isochron [$\delta = 5.0$ (2 SiMe₃), 4.9, 4.7].

Zur Klärung der Stereochemie des Nickel-Zentrums von 8a wurden ¹H-NOE-Differenzspektren^[27a] aufgenommen. Strahlt man in die ¹H-Resonanz der SiMe₃-Gruppen ein, so beobachtet man für die $H_{syn}H_{anti}C$ =-Protonen der Allyl-Gruppe einen positiven NOE; hingegen wird bei Bestrahlung der α -Pyridin-Protonen ein positiver NOE des =CH_{anti}Me-

Tab. 2. ¹H- und ¹³C-NMR-Daten der Butendiyl-Liganden der Komplexe 3–7. Kopplungen in [Hz]. Für weitere Angaben siehe experimentellen Teil

	δ(Η)					δ(C)				
	=CH _{syn} R	=CH _{anti} R	=CH _{meso} -	H _{syn} HC=	HH _{anti} C=	-CH _a H _b Sn	=CH _{meso} -	=СН-	H ₂ C=	CH ₂ Sn
3	4.88 ³ J(HH) 8.2	-	4.22	3.48 ³ J(HH) 7.8	2.32 ³ J(HH) 14.6	1.65, 0.43 ³ J(HH) 5.8 ³ J(HH) 13.0 ² J(HH) -12.8	106.7 ³ J(SnC) 65	76.7 ² J(SnC) 9.4	46.9	17.4 ¹ J(¹¹⁹ SnC) 326 J(CH) 129
4	4.50	-	-	3.24	2.18	1.64, 0.40 ³ J(HH) 5.3 ³ J(HH) 12.7 ² J(HH) -13.1	116.8 ³ J(SnC) 66	74.4 ² J(SnC) 8	46.8	18.8 ¹ J(¹¹⁹ SnC) 334 J(CH) 129
5	-	2.85 ³ J(HH) 10.3	3.90	2.20 ³ J(HH) 6.6	0.97 ³ J(HH) 10.5	1.54, 0.78 ³ J(HH) 6.8 ³ J(HH) 9.2 ² J(HH) -11.9	92.9 ³ J(SnC) 38 J(CH) 157	63.4 ² J(SnC)<1 J(CH) 154	36.4 J(СН) 155	17.7 ¹ J(¹¹⁹ SnC) 348 J(CH) 128
		³ J(PH) 16.5	³ J(PH) 5.5	³ J(PH) 1.4	³ J(PH) 20.4		$^{2}J(PC)$ 5.6			
6	-	3.33 ³ J(HH) 12	4.34	3.24 ³ J(HH) 7.6	1.93 ³ J(HH) 13.6	1.95, 1.30 ³ J(HH) 5.6 ³ J(HH) 12.0 ² J(HH) -12.0	110.3 ³ J(SnC) 56 J(CH) 153	79.4 ² J(SnC) 12 J(CH) 148	45.1 J(CH) 150 J(CH) 161	18.4 ¹ J(¹¹⁹ SnC) 352 J(CH) 130
7	-	2.64 ³ J(HH) 12.6	4.90	3.29 ³ J(HH) 7.4	1.49 ³ J(HH) 13.2	1.96, 1.48 ³ J(HH) 4.5 ³ J(HH) 12.5 ² J(HH) -12.5	110.2 ³ J(SnC) 65 J(CH) 153	83.2 ² J(SnC) 10.5 J(CH) 147	43.4 J(CH) 151 J(CH) 159	18.4 ¹ J(¹¹⁹ SnC) 344 J(CH) 130

Chem. Ber. 1994, 127, 489-500

Protons gefunden. Demnach sind der Sn(Cl){CH(SiMe₃)₂}₂-Ligand nahe den $H_{syn}H_{anti}C$ =-Protonen und der Pyridin-Ligand nahe dem =CH_{anti}Me-Proton angeordnet^[27b].

Den NMR-Spektren zufolge sind in 8a, b an ein Nickel-(II)-Zentrum mit quadratisch-planarer Komplexgeometrie ein Pyridin-Ligand, ein [als komplexes Anion von Zinn(II) aufzufassender] Sn(X){CH(SiMe₃)₂}₂-Ligand und eine (zwei Koordinationsstellen belegende) η^3 -1-Methylallyl-Gruppe gebunden. Für eine solche Koordination des Nikkels(II) (SP-4)^[28] sind zwei (diastereomere) Konfigurationsisomere denkbar, die sich durch Vertauschen der Sn- und Pyridin-Liganden bilden lassen. Zudem sind das Me-substituierte und das meso-C-Atom der Allyl-Gruppe chiral, so daß insgesamt vier (2 3/2) Enantiomerenpaare möglich erscheinen. Durch die Reaktion nach Gl. (9) wird iedoch stereospezifisch nur ein Enantiomerenpaar gebildet. Dieses zeichnet sich dadurch aus, daß das substituierte Allyl-C-Atom die Methyl-Gruppe in syn-Stellung trägt und der Zinn-Ligand zu diesem C-Atom trans steht.

Tab. 3. ¹H- und ¹³C-NMR-Daten des l-Methylallyl-Liganden in 8a, b. Kopplungen in [Hz]. Für weitere Angaben siehe experimentellen Teil

	δ(Η)				
	=CH _{anti} Me	=CH _{meso} -	H _{syn} HC=	HH _{anti} C=	CH ₃
8a	3.67	4.90	2.31	1.27	0.91
	³ J(HH) 13.2		³ J(HH) 6.9	³ J(HH) 12.3	
			³ J(SnH) 39.0	³ J(SnH) 25.7	
			² J(HH) 3.6	² J(HH) 3.6	
8b	3.70	4.92	2.27	1.24	0.88
	³ J(HH) 13.2		³ J(HH) 6.9	³ J(HH) 12.5	
			³ J(SnH) 40.5	³ J(SnH) 16.4	
		δ(C)		
	=CH _{meso} -	=CH(Me)	H ₂ C=	CH3	
8a	107.7	88.4	35.1	16.2	
		² J(¹¹⁹ SnC) 1	20 ² J(SnC) 82	³ J(SnC) 11	

Zum Reaktionsablauf der Bildung von 8a, b

Die Bildung von **8a**, **b** [Gl. (10)] läßt sich nach Gl. (11) formal so erklären, daß durch Protonierung der Endposition einer Allyl-Gruppe in **3** der *syn*-Methyl-Substituent entsteht. Zugleich lagert sich das Halogenid-Ion an das Zinn(IV)-Zentrum an; unter Spaltung der entsprechenden Sn-C-Bindung bildet sich der 1-*syn*-Methylallyl-Ligand des Nickels(II). Der verbliebene $\eta^3(Ni)$, $\eta^1(Sn)$ -Butendiyl-Rest setzt Butadien frei, wobei Zinn(IV) zu Zinn(II) reduziert wird. Das resultierende komplexe Anion [Sn(X){CH-(SiMe₃)₂}₂]⁻ befindet sich in einer quasi-*trans*-Stellung zum Methyl-substituierten Allyl-C-Atom und koordiniert das Nickel(II)-Zentrum über das "freie Elektronenpaar" des

R = CH(SiMe₃)₂

Zinns. Die Komplexe **8a,b** ergeben sich dann durch die zusätzliche Komplexierung von Pyridin. Abschließend sei hervorgehoben, daß die *Protonierungsreaktionen* – durch Abspaltung eines Butendiyl-Restes als Butadien – eine 2-e-*Reduktion* des Metallpaares Ni(II)/Sn(IV) zu Ni(II)/Sn(II) bewirken und daß mit der *Spaltung der Sn-C-Bindungen* die *Rekombination einer Ni-Sn-Bindung* einhergeht.

Diskussion

Vom Ethen-Nickel(0)-Komplex 1 leitet sich das thermisch beständigere 1,6-Heptadien-Derivat 2 ab. In beiden Verbindungen ist das Nickel-Atom koordinativ ungesättigt (16e), und die Alken-Liganden sind schon bei tiefer Temperatur verdrängbar; mit CO bildet sich dabei der 18-e-Komplex $(CO)_3Ni=Sn\{CH(SiMe_3)_2\}_2$. Die Verdrängungsreaktionen sowie die Massenspektren, in denen stets das Fragment $[Ni=Sn{CH(SiMe_3)_2}_2]^+$ auftritt (496; 1 5%, 2 3%, $(CO)_3Ni=Sn\{CH(SiMe_3)_2\}_2$ 30%), belegen durch den Erhalt der Ni=Sn-Bindung^[3] deren hohe Festigkeit. In den Addukten des Typs $(\pi$ -Akzeptor)_nNi-Sn{CH(SiMe_3)₂}₂-(Donor), in denen das Zinn(II)-Zentrum zusätzlich einen Donorliganden bindet, ist vermutlich der Ni-Sn-Bindungsgrad herabgesetzt, jedoch führt die Addukt-Bildung nicht zur Spaltung der Bindung. In den genannten Komplexen kommt der amphotere Charakter des Stannylens zum Ausdruck, indem dieses gleichermaßen als Lewis-Base [gegenüber Nickel(0)] und Lewis-Säure auftritt^[29].

Die unter sehr milden Bedingungen verlaufenden Reaktionen von 1 und 2 mit Butadien oder Isopren führen zu einer *oxidativen Spaltung der Ni=Sn-Bindung*, wobei in den Produkt-Komplexen 3–7 die aus Butadien oder Isopren reduktiv erzeugten Butendiyl-Einheiten η^3 (π) an Ni(II) und η^1 (σ) an Sn(IV) gebunden sind. Nach der Bekanntgabe der ersten Ergebnisse^[1,2a,b] sind ähnliche Strukturelemente auch für zweikernige Butadien-Lanthan-^[30a], Wolfram-^[30b] und Nickel-Komplexe^[30c] mitgeteilt worden (siehe auch Lit.^[31]).

Für die von Butadien abgeleitete Komplexgruppe sind vier Isomere denkbar, von denen das *trans-anti*-Isomere sterisch nicht möglich ist. In der kinetisch kontrollierten Synthese [Gl. (3,4)] entsteht stereospezifisch allein das *cis-anti*-Isomere 3. Dieses kann über das PMe₃-Addukt 5, wie-

derum kinetisch kontrolliert und stereospezifisch, in das nächst stabilere *cis-syn*-Isomere 6 übergeführt werden [Gl. (6)–(8)], das sich letztlich in das *trans-syn*-Isomere 7 als thermodynamisch (und auch thermisch) stabiles Endprodukt umwandelt [Gl. (9)]. PMe₃ initiiert die *anti* \rightarrow *syn*-Isomerisierung 3 \rightarrow 5/6, nicht jedoch die weitere *cis* \rightarrow *trans*-Isomerisierung 6 \rightarrow 7 [*trans*-Bis(allyl)nickel(II)-Komplexe bilden keine stabilen Phosphan-Addukte].

Der mit Isopren anfallende *meso*-Methylallyl-Komplex 4 entsteht in einer regio- und gleichfalls stereospezifischen Reaktion [Gl. (5)]. Dieses *cis-anti-*, Isomere" 4 ist jedoch im Vergleich zu denkbaren anderen Konfigurationsisomeren vermutlich bereits der thermodynamisch begünstigte Komplex, da beispielsweise (bei gleicher Regiospezifität) aufgrund der sterischen Behinderung zwischen *meso*-Methyl-Gruppe und *syn*-ständigen Substituenten die eventuellen (*cis/trans)-syn*-Isomere energiereich sein sollten. Des weiteren erfolgt die Protolyse von 3 mit Pyridin-hydrochlorid/ bromid in einer hoch-stereospezifischen Reaktion [Gl. (10), (11)], bei der von vier denkbaren Enantiomerenpaaren nur eines gebildet wird.

Die gegenüber den konjugierten Dienen zum Ausdruck kommende Reaktionsweise des Ni(0)/Sn(II)-Metallpaares (1,2) ist gekennzeichnet durch die leichten Oxidationsstufenwechsel der Metalle^[32], und zwar

$$Ni(0) \leftrightarrow Ni(II)$$
 und $Sn(II) \leftrightarrow Sn(IV)$,

wobei diese voneinander unabhängig wie auch konzertiert eintreten können. Als Folge dieser Eigenschaften ergeben sich die Reaktionsvielfalt und der sehr leichte Ablauf der Reaktionen, insbesondere der Bruch und Aufbau von Ni-Sn-Bindungen mit wechselseitigem Aufbau und Bruch von Sn-C-Bindungen. Als Unterschied zu den zahlreichen, lange bekannten Reaktionen von Nickel(0) mit Butadien und anderen konjugierten Dienen^[33] ist festzuhalten, daß im Metallpaar Ni(0)/Sn(II) das Stannylen nicht allein als Ligand aufzufassen ist, der die sterischen und elektronischen Verhältnisse des Nickel-Atoms (und damit seine Reaktivität) beeinflußt, sondern daß es selbst ein Reaktionszentrum darstellt, das den Reaktionsverlauf maßgeblich bestimmt.

Unser Dank gilt Frau *B. Nowak* für ihre Mithilfe bei der Durchführung der Versuche sowie Frau *A. Rufinska* für das Festkörper-NMR-Spektrum und Herrn Dr. *K. Seevogel* für die IR-Spektren.

Experimenteller Teil

Alle Substanzen sind luftempfindlich; die Reaktionen sind mit wasserfreien Lösungsmitteln und Reagenzien unter Schutzgas (Argon) durchzuführen. $(C_2H_4)_2Ni=Sn\{CH(SiMe_3)_2\}_2$ (1) wurde wie berichtet^[1] hergestellt. – Die ¹H- und ¹³C-NMR-chemischen Verschiebungen wurden gegen Lösungsmittel-Signale bestimmt und sind relativ zu TMS berechnet angegeben, ³¹P-NMR-chemische Verschiebung bezüglich 85proz. wäßriger H₃PO₄ als externem Standard. Spektrometer und andere Meßgeräte wie angegeben^[1].

 $(\eta^2, \eta^2 - C_2 H_{12})Ni = Sn \{CH(SiMe_3)_2\}_2$ (2): Eine Suspension von 1.10 g (2.0 mmol) 1 in 20 ml Pentan wird bei -10° C unter Rühren mit 1 ml 1,6-Heptadien versetzt. Bei Erwärmung auf 20°C entsteht

eine rotbraune Lösung. Von dieser wird das Lösungsmittel i Vak. abkondensiert; das verbleibende Öl erstarrt bei - 78°C zu einem feinkristallinen rotbraunen Feststoff; Ausb. 1.13 g (95%), Schmp. 50°C, außerordentlich gut in Kohlenwasserstoffen löslich. - IR (KBr): $\tilde{v} = 3030 \text{ cm}^{-1}$ (v=C-H), 1485 (vC=C), Alken. - ¹H-NMR (400 MHz, $[D_8]$ Toluol, 27°C): $\delta = 3.26$ (m, 2H, -CH=), 2.61 ("d", 2H, =CHH_E), 2.51 (m, 2H, -CH_aHCH=), 2.42 ("d", $2 H_{z} = CH_{z}H_{z}$, 1.86, 1.82 (jeweils m, 1 H, $-CH_{a}H_{b}$ -), 0.66 (m, 2 H, -CHH_bCH=); 1.45 ("s", 2H, SnCH), 0.17 ("s", 36H, SiMe₃). -¹³C-NMR (75.5 MHz, [D₈]Toluol, 40°C): $\delta = 68.4$ [2 C, ²J(SnC) = 50 Hz, -CH=], 43.9 (2 C, =CH₂), 33.5 (2 C, -CH₂CH=), 32.6 $(1 \text{ C}, -\text{CH}_2-);$ 48.1 [2 C, ¹J(¹¹⁹SnC) = 303 Hz, SnCH], 4.1 (12 C, SiMe₃). - EI-MS (70 eV, 80°C), m/z (%): 592 (8) [M⁺], 496 (3) $[M^+ - C_7 H_{12}]$, 129 (100) $[Me_3 Si_2 C_2 H_4^+]$. - $C_{21} H_{50} NiSi_4 Sn$ (592.4): ber. C 42.58, H 8.51, Ni 9.91, Si 18.96, Sn 20.04; gef. C 42.49, H 8.59, Ni 9.84, Si 18.82, Sn 20.14.

THF-Solvatkomplex (2a): ¹H-NMR (400 MHz, [D₈]THF, -30°C): $\delta = 3.16$ (m, 2H, -CH=), 2.42 (m, 2H, -CH_aHCH=), 2.36 (m, 2H, =CHH_E), 2.22 (m, 2H, =CH_ZH), 1.89, 1.83 (jeweils m, 1H, -CH_aH_b-), 0.53 (m, 2H, -CHH_bCH=); 0.13 (s, 36H, SiMe₃), 0.10 (s, 2H, SnCH). - ¹³C-NMR (75.5 MHz, [D₈]THF, 40°C): $\delta = 68.4$ [2 C, ²J(SnC) = 50 Hz, -CH=], 43.9 (2 C, =CH₂), 33.8 (2 C, -CH₂CH=), 33.0 [1 C, ⁴J(SnC) = 46 Hz, -CH₂-]; 48.4 [2 C, J(CH) = 109, ¹J(SnC) = 296 Hz, SnCH], 4.2 (12 C, SiMe₃). - Temperaturabhangigkeit der SnC-Signale ([D₈]THF): 40°C: 48.4, 0°C: 48.2, -30°C: 47.9, -80°C: 45.0, -100°C: 40.0, -110°C: ca. 34.

 $Ni-cis-\{\eta^{3}(Ni),\eta^{1}(Sn)-anti-C_{3}H_{4}CH_{2}\}_{2}Sn\{CH(SiMe_{3})_{2}\}_{2}$ (3): 1.10 g (2.0 mmol) festes 1 werden bei -50°C in 5 ml Butadien gelöst. Aus der klaren gelben Lösung scheiden sich bei -78°C langsam gelbe verwachsene Kristalle ab, die mittels Kapillarheber vom Lösungsmitttel befreit und im Hochvakuum bei -78°C getrocknet werden. Ausb. 1.04 g (86%). Aufgrund der außerordentlich guten Löslichkeit (Pentan) wurde die Substanz ohne zu waschen isoliert. Die isolierte und spektroskopisch reine Substanz zersetzt sich oberhalb -10° C. -1H-NMR (400 MHz, [D₈]THF, -50° C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 1.65 [^2J(SnH) = 38 Hz,$ $-CH_{a}HSn$], 0.43 [²J(SnH) = 51 Hz, $-CHH_{b}Sn$]; 0.23, 0.02 (jeweils 18 H, SiMe₃ und SiMe'₃), $-0.26 [1 \text{ H}, {}^{2}J({}^{119}\text{SnH}) = 80 \text{ Hz}, \text{ SnCH}],$ $-0.55 [1 \text{ H}, {}^{2}J({}^{119}\text{SnH}) = 71 \text{ Hz}, \text{SnCH'}]. - {}^{13}\text{C-NMR} (75.5 \text{ MHz},$ $[D_8]$ THF, -50° C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 5.6 [1 \text{ C}, J(\text{CH}) = 105, {}^{1}J({}^{119}\text{SnC}) = 72 \text{ Hz}, \text{ SnCH}], 5.1 [1 \text{ C}, 5.1]$ J(CH) = 106, ${}^{1}J({}^{119}SnC) = 96$ Hz, SnC'H], 4.2 (6 C, SiMe₃), 3.8 $(6 \text{ C}, \text{SiMe}'_3)$. – EI-MS (70 eV, 45°C), m/z (%): 604 (0.8) [M⁺], 546 (1.4) $[M^+ - Ni]$, 438 (17) $[Sn\{CH(SiMe_3)_2\}_2^+]$, 129 (100) $[Me_3 Si_2C_2H_4^+$]. - $C_{22}H_{50}NiSi_4Sn$ (604.4): ber. C 43.72, H 8.34, Ni 9.71, Si 18.59, Sn 19.64; gef. C 43.65, H 8.33, Ni 9.54, Si 18.79, Sn 19.78.

Ni−cis- { $\eta^3(Ni), \eta^1(Sn)$ -anti-C₃(3-Me) H₃CH₂}₂Sn{CH(Si-Me₃)₂}₂ (4): Eine Suspension von 830 mg (1.5 mmol) 1 in 10 ml Pentan wird bei −30°C mit 3 ml Isopren versetzt und 1 h bei dieser Temp. gerührt. Aus der jetzt vorliegenden hellgelben Lösung scheidet sich bei −78°C in ca. 12 h nur wenig Produkt (10−20%) als hellgelbes krustenartiges Kristallisat ab. Durch Abkondensieren des Lösungsmittels im Hochvakuum kann die Substanz (940 mg) quantitativ und analysenrein gewonnen werden. 4 zersetzt sich oberhalb −10°C; kein Massenspektrum möglich. – ¹H-NMR (200 MHz, [D₈]THF, −80°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 1.38$ (s, 6H, CH₃); 0.25, 0.02 (jeweils 18H, SiMe₃ und SiMe'₃), −0.29 [1H, ²J(SnH) = 78 Hz, SnCH], −0.56 [1H, ²J(SnH) = 69 Hz, SnCH']. – ¹³C-NMR (75.5 MHz, [D₈]THF, −30°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 25.2$ (2 C, CH₃); 6.1 [1 C, J(CH) = 107, ¹J(SnC) = 63 Hz, SnCH], 5.1

Chem. Ber. 1994, 127, 489-500

[1 C, J(CH) = 105, ${}^{1}J(SnC) = 88$ Hz, SnC'H], 4.3 (6 C, $SiMe_3$), 3.9 (6 C, $SiMe'_3$). - $C_{24}H_{54}NiSi_4Sn$ (632.4): ber. C 45.58, H 8.61, Ni 9.28, Si 17.76, Sn 18.77; gef. C 45.71, H 8.52, Ni 8.99, Si 17.28, Sn 18.38.

 $(Me_3P)Ni-cis-\{\eta^3(Ni),\eta^1(Sn)-syn-C_3H_4CH_2\}_2Sn\{CH(Si Me_3_2_2_2$ (5): Zur gelben Lösung von 1.21 g (2.0 mmol) 3 in 20 ml Pentan und 2 ml Butadien werden bei -78°C 0.25 ml (>2 mmol) PMe₃ in 5 ml Pentan gehebert, wobei die Farbe sofort nach rot umschlägt. Im Verlauf von 2 d (-78°C) fällt ein feinkristalliner, orangefarbener Feststoff aus, der mittels Kapillarheber von der Mutterlauge befreit wird. Nach zweimaligem Waschen mit je 5 ml Pentan wird das Produkt bei -78°C im Hochvakuum getrocknet. Ausb. 1.02 g (75%). 5 zersetzt sich langsam oberhalb -10° C. -1H-NMR (400 MHz, [D₈]THF, -80°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 1.22$ [d, 9H, ${}^{2}J(PH) = 5.3$ Hz, PMe₃]; 0.16, 0.14 (jeweils 18H, SiMe₃), -0.31, -0.36 (jeweils 1H, SnCH). -¹³C-NMR (75.5 MHz, [D₈]THF, -80°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 16.7$ [q, 3 C, J(PC) = 16.3 Hz, PMe₃]; 7.2 [d, 1C, J(CH) = 107, ${}^{1}J(SnC) = 26$ Hz, SnCH], 4.44, 4.40 [jeweils q, 6 C, SiMe₃ und SiMe'₃], 1.50 [d, 1C, J(CH) = 102 Hz, SnC'H]. - ³¹P-NMR (121.5 MHz, [D₈]THF, -80°C): δ = -14.1 [J(SnP) = 20 Hz]. – EI-MS (70 eV, 78°C), m/z (%): 604 (1) $[M^+ - PMe_3],$ 550 (7) $[M^+ - PMe_3 - C_4H_6],$ 496 (10) $[Ni=Sn{CH(SiMe_3)_2}_2], 129 (100) [Me_3Si_2C_2H_4^+]. - C_{25}H_{59}NiP-$ Si₄Sn (680.5): ber. C 44.13, H 8.74, Ni 8.63, P 4.55, Si 16.51, Sn 17.44; gef. C 44.10, H 8.70, Ni 8.59, P 4.36, Si 16.75, Sn 17.28.

 $Ni-cis-\{\eta^{3}(Ni),\eta^{1}(Sn)-syn-C_{3}H_{4}CH_{2}\}_{2}Sn\{CH(SiMe_{3})_{2}\}_{2}$ (6): Die orangerote Lösung von 1.36 g (2.0 mmol) 5 in 20 ml Pentan wird bei -30°C mit 484 mg (2.0 mmol) festem BPh₃ 12 h gerührt. Die Lösung färbt sich dabei orangegelb, und es fällt ein farbloser Niederschlag (Ph₃B·PMe₃) an, der abfiltriert wird. Das Lösungsmittel wird abkondensiert, bis ein Öl verbleibt (Hochvakuum, -30°C). Nach Zugabe von 10 ml Butadien scheidet sich bei -78°C ein verwachsenes, gelbes Krsitallisat ab (12 h), das man mittels Kapillarheber von der Mutterlauge befreit und im Hochvakuum bei -30° C trocknet. Ausb. 620 mg (51%), Schmp. ca. 20°C. - ¹H-NMR (300 MHz, [D8]THF, 32°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 0.18, 0.05$ (jeweils 18 H, SiMe₃), -0.18, -0.34(jeweils 1H, SnCH). - ¹³C-NMR (75.5 MHz, [D₈]THF, 32°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 7.6$ [d, 1 C, J(CH) = 109, ${}^{1}J(SnC) = 56$ Hz, SnCH], 6.7 [d, 1 C, J(CH) = 107, ${}^{1}J(SnC) = 65 Hz, SnC'H], 4.2 [q, 6 C, J(SiC) = 50 Hz, SiMe_3], 4.1$ $[q, 6 C, J(SiC) = 51 Hz, SiMe'_3]$. – EI-MS (70 eV, 90°C), m/z (%): 604 (1.4) $[M^+]$, 550 (11) $[M^+ - C_4H_6]$, 496 (12) $[Ni=Sn\{CH-C_4H_6]$ $(SiMe_3)_2_2^+$, 438 (5) $[Sn\{CH(SiMe_3)_2\}_2^+]$, 129 (100) $[Me_3Si_2C_2H_4^+]$. C₂₂H₅₀NiSi₄Sn (604.4): ber. C 43.72, H 8.34, Ni 9.71, Si 18.59, Sn 19.64; gef. C 43.60, H 8.54, Ni 9.63, Si 18.61, Sn 19.55.

Ni-trans-{ $\eta^3(Ni)$, $\eta^1(Sn)$ -syn- $C_3H_4CH_2$ }₂Sn{ $CH(SiMe_3)_2$ }₂ (7): Eine gelbe Lösung von 604 mg (1.0 mmol) 6 in 10 ml THF wird 5 h auf 67°C erwärmt (Rückfluß). Dabei färbt sich die Lösung tiefbraunrot. Nach Filtrieren zur Abtrennung feiner schwerlöslicher Verunreinigungen wird die Lösung i. Vak. zu einem braunen Öl eingeengt (weder aus kaltem Pentan noch aus Butadien ließen sich Kristalle erhalten). Laut ¹H- und ¹³C-NMR-Spektren stellt das ölige Produkt eine Mischung der Isomeren 6 (35%) und 7 (65%) ohne weitere Nebenkomponenten dar. - ¹H-NMR (300 MHz, $[D_8]$ THF, 32°C): Butendivl-Resonanzen siehe Tab. 2. Weitere: $\delta =$ 0.13, 0.12 (jeweils 18H, SiMe₃ diastereotop), -0.25 (2H, SnCH). - ¹³C-NMR (75.5 MHz, [D₈]THF, 32°C): Butendiyl-Resonanzen siehe Tab. 2. Weitere: $\delta = 6.9 [d, 2 C, J(CH) = 107, {}^{1}J(SnC) = 68$ Hz, SnCH], 4.3, 4.1 [beide q, 6 C, J(SiC) = 50 Hz, SiMe₃ diastereotop].

 $\{(Me_{3}Si)_{2}CH\}_{2}(Cl)Sn[Ni(\eta^{3}-1-syn-MeC_{3}H_{4})(NC_{5}H_{5})$ (8a): Zu der gelben Lösung von 1.21 g (2.0 mmol) 3 in 25 ml THF werden bei -30°C 231 mg (2.0 mmol) festes Pyridin-hydrochlorid gegeben. Nach 1stdg. Rühren erhält man eine orangerote Lösung, die zur Trockene eingeengt wird. Der Rückstand wird mit 100 ml Pentan extrahiert. Aus der Pentan-Lösung fallen im Verlauf von 2 d bei -78°C orangerote Kristalle aus, die mittels Kapillarheber vom Lösungsmittel befreit, mit 10 ml Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 1.08 g (79%), Schmp. 76°C. - IR (KBr): $\tilde{v} = 1110 \text{ m cm}^{-1} (v_{as}CCC), 955 \text{ m} (\delta CH_2), \text{Allyl.} - {}^{1}\text{H-NMR} (400)$ MHz, [D₈]THF, -30°C): 1-Methylallyl-Resonanzen siehe Tab. 3. Weitere: $\delta = 8.65, 7.77, 7.46$ (insgesamt 5 H), Pyridin; 0.04, -0.19 (jeweils 1 H, SnCH und SnCH'), 0.25, 0.20, 0.13, 0.07 (jeweils s, 9H, SiMe₃). - ¹³C-NMR (75.5 MHz, [D₈]THF, 38°C): 1-Methylallyl-Resonanzen siehe Tab. 3. Weitere: $\delta = 152.7, 137.3, 125.8$ (insgesamt 5 C), Pyridin; 13.9 [1 C, J(CH) = 106, ${}^{1}J({}^{119}SnC) = 141$ Hz, SnCH], 13.9 [1 C, J(CH) = 106, ${}^{1}J({}^{119}SnC) = 124$ Hz, SnC'H], 5.0, 5.0, 4.9, 4.7 (jeweils 3 C, SiMe₃). $- C_{23}H_{50}ClNNiSi_4Sn$ (665.9): ber. C 41.49, H 7.57, Cl 5.32, N 2.10, Ni 8.82, Si 16.87, Sn 17.83. Die Verbindung schließt im Kristall Pentan ein: $C_{23}H_{50}CINNiSi_4Sn \cdot 0.2 C_5H_{12}$ (665.9+14.4): ber. C 42.37, H 7.76, Cl 5.21, N 2.06, Ni 8.63, Sn 17.45; gef. C 42.80, H 7.81, Cl 5.12, N 2.11, Ni 8.58, Sn 17.38.

 $[\{(Me_3Si)_2CH\}_2(Br)Sn]Ni(\eta^3-1-syn-MeC_3H_4)(NC_5H_5)$ (8b): Synthese wie für 8a, aber mit 320 mg (2.0 mmol) Pyridin-hydrobromid. Ausb. 650 mg (44%), orangerote Kristalle, Schmp. 85°C; die Substanz verdampft nicht unzersetzt. – IR (KBr): $\tilde{v} = 1110$ m cm⁻¹ (v_{as}CCC), 955 m (δ CH₂), Allyl. – ¹H-NMR (400 MHz, [D₈]THF, -30°C): 1-Methylallyl-Resonanzen siehe Tab. 3. Weitere: $\delta = 8.64, 7.76, 7.46$ (insgesamt 5H), Pyridin; 0.41, -0.10 [jeweils 1H, ²J(SnH) = 20.5 Hz, SnCH], 0.22, 0.25, 0.16, 0.13 (jeweils s, 9H, SiMe₃). – C₂₃H₅₀BrNNiSi₄Sn (710.3): ber. C 38.89, H 7.10, Br 11.25, N 1.97, Ni 8.27, Si 15.82, Sn 16.71. Die Verbindung schließt im Kristall Pentan ein: C₂₃H₅₀BrNNiSi₄Sn · 0.5 C₅H₁₂ (710.3+36.1): ber. C 41.04, H 7.56, Br 10.71, N 1.88, Ni 7.86, Sn 15.90; gef. C 41.85, H 7.79, Br 10.81, N 1.82, Ni 8.05, Sn 16.12.

- Teil I: C. Pluta, K.-R. Pörschke, R. Mynott, P. Betz, C. Krüger, *Chem. Ber.* 1991, 124, 1321.
 ^[2] ^[2a]C. Pluta, Diplomarbeit, Universität Düsseldorf, 1988. –
- ^[2] ^[2a] C. Pluta, Diplomarbeit, Universität Düsseldorf, 1988. –
 ^[2b] C. Pluta, K.-R. Pörschke, VI. Int. Conf. Organomet. Coord. Chem. of Ge, Sn, Pb 1989, Brüssel (23.–28, Juli 1989), P 83. –
 ^[2c] C. Pluta, Dissertation, Universität Düsseldorf, 1992. –
 ^[2d] C. Pluta, K.-R. Pörschke, Chemiedozententagung 1992, Heidelberg (15.–18. März 1992), A 3.
- [3] Aus formalistischen Gründen wird in dieser Arbeit für solvatfreie Ni(0)-Sn(II)-Komplexe eine Doppelbindung Ni=Sn im Sinne einer Grenzstruktur-Beschreibung angegeben. Die tatsächlichen Bindungsverhältnisse dürften denen von Ni(0)-Carbonyl- und Ni(0)-(Fischer)Carben-Komplexen ähneln.
- [4] B. Proft, K.-R. Porschke, F. Lutz, C. Krüger, Chem. Ber. 1991, 124, 2667.
- [5] Erwartungsgemäß erfahren in L-Ni(η²,η²-C₇H₁₂)-Komplexen^[4] die Dien-C-Atom-Signale durch die Komplexierung an Nickel(0) einen starken Hochfeldshift (die Signallage der allylund mittelständigen Methylen-C-Atome ändert sich nur wenig). Der Vergleich von 2 mit anderen Komplexen dieses Typs zeigt, daß der Hochfeldshift der Dien-C-Atome etwa dem für L = PiPr₃ entspricht, so daß auch aufgrund dieser Daten das Stannylen als Ligand am Nickel(0) mit überwiegenden Donoreigenschaften einzustufen ist.
- ^[6] Für den 2,6-Lutidin-Komplex (η²,η²-C₇H₁₂)Ni(NC₅H₃-2,6-Me₂), dessen Pyridin-Ebene im Kristall senkrecht zur Koordinationsebene des Nickels ausgerichtet ist, beobachtet man in den NMR-Spektren (27°C) zwei CH₃-Resonanzen. Somit zeigt der Pyridin-Ligand *keine Rotation* um die Ni–N-Bindung. U. Rosenthal, K.-R. Pörschke, unveröffentlicht.
- ^[7] Im Festkörper-CP/MAS-¹³C-NMR-Spektrum (50.3 MHz, 38°C) werden sieben Signale für den 1,6-Heptadien-Liganden, vier für die SiMe₃-Gruppen und zwei für die Methin-C-Atome

gefunden. Diese Signale sind mit einer asymmetrischen Struktur von 2 im Festkörper (ähnlich der von 1, Kristallstruktur) vereinbar, d.h. hier findet keine Rotation um die Ni=Sn-Bindung statt.

- ^[8] Bei starrer Anordnung der beiden CH(SiMe₃)₂-Substituenten des Zinn-Atoms wäre zu erwarten, daß diese sich so zueinander anordnen, daß die SiMe3-Gruppen "auf Lücke" stehen, d.h. die geminalen SiMe₃-Gruppen inäquivalent wären. Somit würden (bei freier Ni=Sn-Bindungsrotation) zwei SiMe3-Signale erwartet.
- [9] E. G. Hoffmann, R. Kallweit, G. Schroth, K. Seevogel, W. Stempfle, G. Wilke, J. Organomet. Chem. 1975, 97, 183.
- Stempfle, G. Wilke, J. Organomet. Chem. 1975, 97, 185.
 [10] [10a] Die Rotfärbung erklärt sich durch Bildung von Ni(ŋ³,ŋ³,ŋ²-C₁₂H₁₈) und Ni(cdt). G. Wilke, M. Kröner, B. Bogdanovic, Angew. Chem. 1961, 73, 755; B. Bogdanovic, P. Heimbach, M. Kröner, G. Wilke, E. G. Hoffmann, J. Brandt, Liebigs Ann. Chem. 1969, 727, 143. ^[10b] H. Breil, P. Heimbach, M. Kröner, H. Müller, G. Wilke, Makromol. Chem. 1963, 69, 18. ^[10c] Als "nacktes Nickel" bezeichnet man Alken-Nickel(0)-Komplexe deren Liganden alle leicht verdrängebar sind oder Komplexe, deren Liganden alle leicht verdrängbar sind, oder Allyl-Nickel(II)-Komplexe, die unter oxidativer Verknüpfung der Allylreste reduktiv Nickel(0) freisetzen. G. Wilke, Angew. Chem. 1963, 75, 10; Angew. Chem. Int. Ed. Engl. 1963, 2, 105; G. Wilke et al., Angew. Chem. 1966, 78, 157; Angew. Chem. Int. Ed. Engl. 1966, 5, 151.
- ^[11] Im Spektrum sind zudem die Signale von restlichen Mengen Butadien ($\delta_{\rm H} = 6.36, 5.23, 5.10$) vorhanden. ^[12] Zur Zuordnung der NMR-Signale von Allyl-Nickel-Verbindun-
- gen siehe: B. Henc, P. W. Jolly, R. Salz, G. Wilke, R. Benn, E. G. Hoffmann, R. Mynott, G. Schroth, K. Seevogel, J. C. Sekutowski, C. Krüger, J. Organomet. Chem. 1980, 191, 425.
- ^[13] R. Benn, G. Schroth, Org. Magn. Res. 1980, 14, 435.
- ^[14] Zum Vergleich: Sn(CH₃)₄, ${}^{2}J(SnH) = 54$ Hz. Siehe A. G. Davies, P. J. Smith in Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Bd. 2, S. 519, dort S. 530, Pergamon Press, Oxford 1982.
- ^[15] Beispielsweise Sn(n-C₄H₉)₄: ¹J(SnC) = 314, ²J(SnC) = 20, ³J(SnC) = 52 Hz. B. E. Mann, B. F. Taylor, ¹³C-NMR Data for Organometallic Compounds, Academic Press, London, 1981,
- ^[16] Siehe hierzu auch: ^[16a] B. Wrackmeyer, K. Horchler, H. Zhou, *Spectrochim. Acta, Part A*, **1990**, *46*, 809. ^[16b] M. Westerhausen, T. Hildenbrand, J. Organomet. Chem. **1991**, *411*, 1.
- ^[17] Monoligand-modifizierte Nickel(0)-Systeme reagieren in der Regel mit zwei Äquivalenten Butadien zu Komplexen mit einer Octadiendiyl-Kette^[34]. Formal beinhaltet dieser Reaktionstyp die Oxidation des Nickels zu Ni(II) und eine einfache Reduktion der Butadien-Moleküle zu Butenyl-Radikalanionen, die eine C-C-Verknüpfung eingehen.
- ^[18] Ni(C₂H₄)₃ reagiert in Pentan oder Ether sowie in Gegenwart von THF mit Butadien oberhalb -50°C unter Trimerisierung des Butadiens zur roten Lösung von Ni $(\eta^3, \eta^3, \eta^2-C_{12}H_{18})$; bei -78° C tritt *keine* Verknüpfungsreaktion ein. Durch Donorliganden werden Verknüpfungsreaktionen (Phosphane, Phosphite: Dimerisation, siehe Lit.^[17,34]) aber schon bei –78°C ausgelöst, wobei in Gegenwart von 1-Azabicyclo[2.2.2]octan als einem starken tert.-Amin-Donorliganden gleichfalls eine Trimerisierung des Butadiens stattfindet. Das heißt, dieses katalysiert

aufgrund seiner Donorwirkung bei tiefer Temperatur die für "nacktes Nickel(0)" ansonsten erst bei höherer Temperatur ablaufende Umsetzung (W. Schröder, Diplomarbeit, Universität

- laufende Unisetzung (m. Schreder, 2.4. Bonn, 1986, S. 21f). ^[19] In CpNi{ η^3 -CH₂C(CH₃)CHR} (R = Alkyl) liegt das ¹³C-NMR-Signal der *meso*-CH₃-Gruppe für R_{anti} bei δ ca. 24–25 und für R_{syn} bei δ ca. 18.5–20.5. NMR-Datensammlung dieses Instituts
- ^[20] H. Lehmkuhl, A. Rufinska, K. Mehler, R. Benn, G. Schroth, Liebigs Ann. Chem. 1980, 744.
- [21] P. W. Jolly, R. Mynott, Adv. Organomet. Chem. 1981, 19, 257.
 [22] B. Henc, P. W. Jolly, R. Salz, S. Stobbe, G. Wilke, R. Benn, R. Mynott, K. Seevogel, R. Goddard, C. Krüger, J. Organomet. Chem. 1002, 440.
- ^{Chem.} 1980, 191, 449. ^[23] ^[23a] J. Apel, J. Grobe, Z. Anorg. Allg. Chem. 1979, 453, 28. ^[23b] Ph₃B·PMe₃: Bei Zugabe von 152 mg PMe₃ (2.0 mmol) in 10 ml Pentan zu einer Lösung von 484 mg (2.0 mmol) BPh₃ in 20 ml Pentan (20°C) fällt sofort ein farbloser feinkristalliner Niederschlag aus, der abfiltriert, mit Pentan gewaschen und i. Vak. getrocknet wird. Ausb. 590 mg (93%). C₂₁H₂₄BP (318.2).
 Schmp. >230°C. - EI-MS (70 eV, 70°C), *m/z* (%): 318 (0.3) [M⁺], 242 (100) [BPh₃⁺].
 [24] J. L. Wardell, *Chemistry of Tin* (Ed.: P. G. Harrison), Blackie, Glasgow, 1989, S. 168ff.
 [27] T. Eildhener, A. Haellend, P. E. B. Schüllige, M. E. Langet, A.
- ^[25] T. Fjeldberg, A. Haaland, B. E. R. Schilling, M. F. Lappert, A. J. Thorne, J. Chem. Soc., Dalton Trans. 1986, 1551.
 ^[26] H. P. Fritz, Chem. Ber. 1961, 94, 1217; D. M. Adams, Metal-
- ^[143] H. P. Fritz, Chem. Ber. 1961, 94, 1217; D. M. Adams, Metal-Ligand and Related Vibrations, Arnold, London, 1967.
 ^[27] [^{27a]} H. Friebolin, Ein- und zweidimensionale NMR-Spektrosko-pie, VCH, Weinheim, 1992, S. 273. ^[27b] Die NOE-Spektren schließen einen regioisomeren Komplex (η³-1-Methyl-allyl)Ni(II)(Cl)[Sn{CH(SiMe₃)₂}₂:py] aus, in dem eine Ni-Cl-Bindung vorliegt und py an Zinn koordiniert ist. Für den Fall dieser Geometrie sollte der NOE bei Einstrahlung in die SiMe₃-oder Pyridin-Resonarz stets auf der gleichen Seite des Allyloder Pyridin-Resonanz stets auf der gleichen Seite des Allyl-Systems eintreten.
- ^[28] Int. Union Pure Appl. Chem., Nomenclature of Inorganic Chemistry (Leigh, Ed.), Blackwell, Oxford, 1990; B. P. Block, W. H. Powell, W. C. Fernelius, Inorganic Chemical Nomenclature, American Chemical Society, 1990.
- ^[29] J. D. Cotton, P. J. Davidson, M. F. Lappert, J. Chem. Soc., Dalton Trans. 1976, 2275.
 ^[30] ^[30a] A. Scholz, A. Smola, J. Scholz, J. Loebel, H. Schumann, K.-H. Thiele, Angew. Chem. 1991, 103, 444; Angew. Chem. Int. Ed. Engl. 1991, 30, 435. ^[30b] M. H. Chisholm, J. C. Huffman, F. A. Lucze, F. P. Lubleavelle, Organization 1001, 100, 2424 E. A. Lucas, E. B. Lubkovsky, *Organometallics* **1991**, *10*, 3424. – ^[30c] U. Denninger, Dissertation, Universität Bochum, **1992**; U. Denninger, G. Wilke, unveröffentlichte Ergebnisse.
- ^[31] G. Erker, R. Noe, C. Krüger, S. Werner, Organometallics 1992, 11, 4174.
- ^[32] Dies gilt auch für das System Ni(0)/Sn(II)/Ethin: C. Pluta, K.-
- R. Pörschke, I. Ortmann, C. Krüger, Chem. Ber. 1992, 125, 103.
 P. W. Jolly, G. Wilke, The Organic Chemistry of Nickel, Bd. 2, Academic Press, New York, 1975; P. W. Jolly in Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Bd. 8, Pergamon, Oxford, **1982**, S. 671.
- ^[34] R. Benn, B. Büssemeier, S. Holle, P. W. Jolly, R. Mynott, I. Tkatchenko, G. Wilke, J. Organomet. Chem. 1985, 279, 63.

[317/93]